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Abstract

It is well known that using a penalty function can significantly improve the search performance of a
genetic algorithm (GA) on constrained optimization problems. However, although it is intuitively clear,
there is very little theory for why and how this actually works. Here, a formal investigation into this
phenomenon is presented in terms of a schema analysis and a Walsh function analysis. This explicitly
elucidates two particular mechanisms by which a penalty function can improve GA search performance.
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1 Introduction

Genetic algorithms (Holland, 1975; Goldberg, 1989b; Mitchell, 1996) are a well-known machine learning
technique for finding good approximate solutions to difficult optimization problems. When dealing with
constrained optimization, the use of a penalty function was already suggested early on (Goldberg, 1989b;
Davis, 1991). Subsequently, various guidelines have been provided for how to use penalty functions in a
genetic algorithm (GA) in an efficient way (Richardson et al., 1989; Deb, 2000), and experiments have shown
that this indeed improves the search performance (Siedlecki and Sklansky, 1989; Powell and Skolnick, 1993;
Smith and Tate, 1993). Other methods for handling constraints have also been proposed. However, they
are usually more complicated, requiring special genetic operators that preserve feasibility (Michalewicz and
Janikow, 1991), or using several (computationally expensive) steps to identify the feasible region in the
search space (Schoenauer and Xanthakis, 1993). A comparison of several such methods was presented by
Michalewicz (1995).

A penalty function thus provides a simple and cost effective method that, when carefully applied, sig-
nificantly improves the GA search performance. However, although it is intuitively clear why and how this
works, there is very little mathematical theory underlying this. Here, a GA is applied to a simple instance
of the knapsack problem, both with and without a penalty function. The differences in search performance
between the two methods are then formally analyzed in terms of schemata and Walsh functions. This formal
analysis explicitly elucidates two possible mechanisms by which a penalty function can help improve GA
search performance.

This paper is organized as follows. First, section 2 describes the methodology used, in particular the
instance of the knapsack problem, the penalty function, and the GA parameters. Next, section 3 presents
the formal analyses in terms of a schema analysis and a Walsh function analysis, respectively, to explain the
differences in search performance. Finally, section 4 summarizes the main conclusions, and some directions
for further research are suggested.

2 Methodology

2.1 The knapsack problem

The knapsack problem is a well-known and easy to define constrained optimization problem (Moret and
Shapiro, 1991). Imagine a number N of objects, each with a particular value vi and weight wi, i = 1, . . . , N .

1



112 Journal of Statistics and Computer Science

The goal is to put a subset of these objects in a knapsack, such that the sum of their values is maximized,
but with the sum of their weights not exceeding a given maximum weight M . Formally, the problem is
stated as follows:

maximize
N∑
i=1

vixi subject to

N∑
i=1

wixi ≤ M

where xi ∈ {0, 1}. Solutions that obey the maximum weight constraint are called feasible, and solutions that
violate this constraint are called infeasible.

Here, an instance of the knapsack problem with N = 10 objects is considered, where the values and
weights are as shown in Table 1. The values are chosen at random, and the weights are the same as the
values, but at random positions two weights are swapped. The sum of the values (and thus also of the
weights) of all 10 objects is equal to 97. The maximum allowed weight M is set to 80.

Table 1: The values and weights in the used instance of the knapsack problem.

Object 1 2 3 4 5 6 7 8 9 10
Value 10 13 11 8 2 12 19 5 7 10
Weight 8 5 19 10 2 12 11 13 10 7

For this knapsack instance it is easy to find the optimal solution, which turns out to be all objects
included except for the third one, yielding a total value of 86 and a total weight of 78. In that sense there is
no reason to apply a GA, but this instance is small enough to allow for a complete formal analysis. In the
GA, the genotypes are bit strings of length N , where the ith bit indicates whether object i is included (1)
or not (0). The fitness of a bit string is then simply the sum of the values of all the included objects (i.e.,
all the objects that have a 1 at their corresponding bit positions).

However, because of the maximum weight constraint, the GA could create infeasible solutions. One way
of dealing with this, is to just discard infeasible solutions and give them a fitness of zero. Another way is
to use a penalty function, and “punish” infeasible solutions by decreasing the fitness value they would have
when the constraint is ignored.

2.2 The penalty function

The most common and straightforward way of incorporating a penalty for infeasible solutions is to let the
penalty depend on how many constraints are violated, and how badly they are violated (Richardson et al.,
1989). It has been shown that this method will indeed improve GA search performance on constrained
optimization problems (Siedlecki and Sklansky, 1989; Powell and Skolnick, 1993; Smith and Tate, 1993).

Since the knapsack problem has only one constraint, the penalty function used here is very simple. For
each infeasible solution in the GA population, the unconstrained fitness will be decreased by a fixed fraction,
regardless of how much the weight restriction is violated. In other words, each infeasible solution will be
assigned a fitness value of c · f , where c is a fixed value between 0 and 1, and f is the fitness value of the
solution without any constraints (i.e., the sum of the values of all objects with a 1 in their corresponding bit
position). A feasible solution will just be assigned its unpenalized fitness value.

The parameter c can be tuned, which will influence the search performance of the GA. Care should be
taken, however, that the value of this parameter is not set too high, otherwise an infeasible solution might end
up with a higher fitness than the optimal (feasible) solution. With this in mind, the value of c is (otherwise
arbitrarily) set to 0.75.

2.3 GA search performance

Two variants of a GA were applied to the given instance of the knapsack problem. In the first variant, the
fitness of infeasible solutions is simply set to 0. In the second variant, the penalty function described in the
previous section is used. Otherwise the implementation of both variants is exactly the same: a population
size of 50, roulette wheel selection, one-point crossover with a probability of 0.75, and a per-bit mutation
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rate of 0.01. With each GA variant, 100 runs were performed for 100 generations each. (Note that a fairly
low mutation rate is used, as the analyses below focus primarily on crossover mechanisms.)

The number of runs (out of 100) where the optimal solution was found is 70 for the variant that discards
infeasible solutions (i.e., gives them a fitness of 0), while it is 95 for the variant with the penalty function.
Clearly, the penalty function significantly improves the search performance of the GA. Increasing the number
of generations in a run does not make a difference, as the optimal solution is typically found in about 20
generations, or not at all.

As a reminder, the optimal solution for the particular instance used here is 1101111111, i.e., all objects
except the third one included, with a total value of 86. It turns out that for those runs where the GA did
not find the optimal solution, it converged to a sub-optimal solution 1111111001, i.e., all objects except
the eighth and ninth included, with a total value of 85, just one less than the optimal value. The question
now is: How did the penalty function help the GA to find the optimum significantly more often instead of
converging to the sub-optimal solution?

3 Results and Discussion

3.1 Schema analysis

One way of trying to answer this question is to look at the schemata (Holland, 1975) that characterize the
optimal and sub-optimal solutions. Since these two solutions differ in the third, eighth and ninth bit, the
value of the other seven bits do not matter for this comparison. This gives rise to the following two schemata:

optimal solution schema: ∗ ∗ 0 ∗ ∗ ∗ ∗11∗
sub-optimal solution schema: ∗ ∗ 1 ∗ ∗ ∗ ∗00∗

Since there are only 210 = 1024 possible bit strings of length N = 10, it is easy to calculate the fitness
values of these schemata, which is the average of the fitness values of all their respective instances. Note
that neither schema contains any infeasible instances, so these average fitness values, presented in Table 2
are the same for both GA variants.

Table 2: The fitness values of the relevant schemata.

schema optimal sub-optimal
∗ ∗ 0 ∗ ∗ ∗ ∗11∗ ∗ ∗ 1 ∗ ∗ ∗ ∗00∗

fitness 49.0 48.0
st.dev. 15.4 15.4

The fitness of the sub-optimal schema is just one less than the fitness of the optimal schema, both having
a rather high variance. Therefore, because of sampling biases caused by a finite population size, sometimes
the GA will converge to the sub-optimal schema. Once the population is dominated by the sub-optimal
schema, crossover is not able to produce the optimal solution anymore, and with a low mutation rate the
probability of mutating the three relevant bits all at once is too low.

So, it might be useful to have an “intermediate” schema that can compete with the sub-optimal schema,
and help the GA to find the optimal solution via a crossover between instances of the sub-optimal schema
and the intermediate schema.

Two possible candidates for such an intermediate schema are ∗∗0∗∗∗∗00∗ and ∗∗1∗∗∗∗11∗. Calculating
their average fitness values yields a value of 37.0 and 46.6 respectively. Note, however, that the second
intermediate schema does have infeasible instances, and the average fitness of 46.6 is for the first GA variant,
where infeasible solutions have a fitness of 0. It seems that only the intermediate schema ∗ ∗ 1 ∗ ∗ ∗ ∗11∗
would be able to compete with the sub-optimal schema, since its fitness is close to that of the sub-optimal
one.

Figure 1 shows a particular run of the first GA variant (i.e., without the penalty function), where it
eventually converges to the sub-optimal schema. The plot shows the percentages of individuals in the
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population that are an instance of any of the three relevant schemata (optimal ∗ ∗ 0 ∗ ∗ ∗ ∗11∗, sub-optimal
∗1 ∗ ∗ ∗ ∗00∗, and intermediate ∗1 ∗ ∗ ∗ ∗11∗). The optimal and intermediate schemata die out rather quickly,
and only the sub-optimal schema eventually survives. Clearly, the intermediate schema is not able to compete
sufficiently with the sub-optimal schema, and there is no opportunity for a crossover between instances of
the intermediate and sub-optimal schemata.
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Figure 1: A particular GA run without the penalty function.

However, using the penalty function will increase the fitness of this intermediate schema, as it increases
the fitness values of its infeasible instances from zero to some positive number. Recalculating the fitness
value of the intermediate schema, but with the penalty function, gives a value of 56.7, i.e., higher than that
of both the optimal and sub-optimal schema. This should certainly make the intermediate schema capable
of competing with the sub-optimal one.

Figure 2 shows a particular run of the second GA variant (i.e., with the penalty function), where the
GA initially converges to the sub-optimal schema, with the optimal schema quickly dying out. However, the
intermediate schema is now able to survive, and after almost 50 generations the optimal schema suddenly
re-appears, and eventually dominates the population. Clearly the penalty function, as opposed to just
discarding infeasible solutions, helps the GA to find the optimal solution by making the intermediate schema
competitive enough, thus providing an opportunity to have a crossover event between instances of the sub-
optimal and the intermediate schemata.

This provides one possible and explicit explanation for the intuitive understanding of why penalty func-
tions improve GA search performance on constrained optimization problems. In this particular case, the
penalty function makes an intermediate schema competitive enough to stay alive, even if the population
becomes dominated by a schema that belongs to a sub-optimal solution. This enables the GA to still find
the optimal solution, even after initially converging to a sub-optimal one.

3.2 Walsh function analysis

Walsh functions (Walsh, 1923) can be used to analyze the difference in search performance of the GA with
and without the penalty function in even more detail. In particular, the method presented by Goldberg
(1989a) and Forrest and Mitchell (1993) is used here.

A Walsh function ψj maps a bit string x, x ∈ {0, 1}l, to {−1,+1}:

ψj(x) =

{
+1 if x ∧ j has even parity
−1 otherwise

where ∧ denotes bitwise AND, and the parity of a bit string is the number of 1s in the string. The index j,
represented as a bit string of length l, denotes a partition of the space of all possible bit strings of length l.
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Figure 2: A particular GA run with the penalty function.

The order of a partition j is the number of “defined” bits in the partition, i.e., the number of 1s in the bit
string j.

Analogous to a Fourier transform, each function f defined on {0, 1}l can now be written as a linear
combination of Walsh functions:

f(x) =

2l−1∑
j=0

ωjψj(x)

where the ωj are real valued Walsh coefficients, which can be calculated by:

ωj =
1

2l

2l−1∑
x=0

f(x)ψj(x)

The function f(x) can be calculated as a sum of Walsh coefficients, where each term contributes to a better
approximation of the exact value f(x).

These Walsh coefficients can also be used to calculate or approximate the fitness of schemata. Since a
schema itself is not a bit string, first a function is defined that transforms a schema h to a bit string:

β(hi) =

{
0 if hi ∈ {0, ∗}
1 if hi = 1

The fitness of schema h is now calculated as:

f(h) =
∑

j∈J(h)

ωjψj(β(h))

Here, J(h) is the set of all indices of the partitions of which schema h is a subset. As a simple example,
taken from Forrest and Mitchell (1993), the fitness of the schema ∗11 can be calculated as:

f(∗11) = ω000 − ω001 − ω010 + ω011

An exact calculation of f(h) can be obtained by letting j run over all elements of J(h). A first order
approximation is obtained by only considering partitions of order 1 or smaller. An ith order approximation
is obtained by considering all partitions of order i or smaller.

Forrest and Mitchell (1993) give the following interpretation of how a GA works in terms of schemata
and Walsh coefficients:
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The GA’s estimate of a given schema s can be thought of as a process of gradual refinement,
where the algorithm initially bases its estimate on information about the low-order schemata
containing s, and gradually refines this estimate from information about higher and higher order
schemata containing s. Likewise, the terms in the sum above represent increasing refinements
to the estimate of how good the schema ∗11 is. The term ω000 gives the population average
(corresponding to the average fitness of the schema ∗ ∗ ∗), and the increasingly higher-order
ωj ’s in the sum represent higher-order refinements of the estimate of ∗11’s fitness, where the
refinements are obtained by summing ωj ’s corresponding to higher and higher order partitions j
containing ∗11.

Thus, such a Walsh coefficients analysis can be applied to the optimal and sub-optimal schemata as
defined in the previous section. The relevant Walsh coefficients for calculating the fitness of the optimal and
sub-optimal schemata can be obtained as a function of the parameter c in the penalty function. Using these
coefficients, a first order estimate f1 of the fitness of these schemata is given by:

f1(∗ ∗ 0 ∗ ∗ ∗ ∗11∗) = ω0000000000 + ω0010000000 − ω0000000100 − ω0000000010

= 45.66 + 3.34c

f1(∗ ∗ 1 ∗ ∗ ∗ ∗00∗) = ω0000000000 − ω0010000000 + ω0000000100 + ω0000000010

= 47.15 + 0.87c

It is clear that without the penalty function, i.e., when c = 0, the first order estimate of the fitness of the
sub-optimal schema (47.15) is higher than that of the optimal schema (45.66). So it is not surprising that
the GA tends to converge to the sub-optimal solution so often, since its schema will on average get a higher
fitness estimate early on in the search. Only for c = 0.60 are both first order estimates equal, and for higher
values of c, the first order estimate of the optimal schema is higher than that of the sub-optimal schema.

A second order estimate f2 of the fitness of both schemata is given by:

f2(∗ ∗ 0 ∗ ∗ ∗ ∗11∗) = f1(∗ ∗ 0 ∗ ∗ ∗ ∗11∗)− ω0010000100 − ω0010000010 + ω0000000110

= 47.76 + 1.24c

f2(∗ ∗ 1 ∗ ∗ ∗ ∗00∗) = f1(∗ ∗ 1 ∗ ∗ ∗ ∗00∗)− ω0010000100 − ω0010000010 + ω0000000110

= 49.24− 1.24c

Again, for c = 0 the estimate of the fitness of the sub-optimal schema (49.24) is higher than that of the
optimal schema (47.76), and they become equal for c = 0.60. So even the second order estimate will on
average prefer the sub-optimal schema. A third order estimate, which is in this case also an exact one, gives
the actual fitness values of the two schemata as given in the previous section.

This provides another explicit and formal explanation for how a penalty function can help the GA to
find the optimal solution more often. Since the GA initially bases its estimates of schema fitnesses on lower-
order estimates, it will on average prefer the sub-optimal schema when no penalty function is used (c = 0).
However, using a penalty function will change these estimates, making the (lower-order) estimates of the
fitness of the optimal schema higher than those of the sub-optimal schema.

4 Conclusions

Experiments have shown that when a GA is applied to a constrained optimization problem, the use of a
penalty function can significantly improve its search performance. However, although it is intuitively clear,
surprisingly little theory is available for why or how this actually works. In this paper, two explicit and formal
explanations are provided for how a penalty function can help in improving the GA search performance.
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The first explanation shows that the use of a penalty function can increase the fitness of an intermediate
schema that is necessary to be able to find the optimal solution after the population has converged to a sub-
optimal one. Without the use of a penalty function, i.e., just discarding infeasible solutions, this intermediate
schema would not be competitive enough to survive.

The second explanation shows that the use of a penalty function can increase the lower-order estimates
of the fitness of a schema of which the optimal solution is an instance, compared to that of a sub-optimal
schema. Since the GA initially bases its estimates of these schema fitnesses on lower-order estimates, this
can prevent the GA from convergence to a sub-optimal solution.

It is expected that these formal explanations generalize to a wider range of problems, and thus con-
tribute to a real theory of how and why penalty functions improve GA search performance in constrained
optimization. Suggested further research includes investigating how often the two mechanisms occur over a
large number of GA runs (and other problems), and whether they can also work together, or always strictly
independently.
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